对火星轨道变化问题的最后解释(2/4)
weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdom&holman1991;kinoshita,yoshida&nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(saha&tremaine1992,1994).
thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussman&wisdom(1988,)andsaha&tremaine(1994,225/32d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-,wisdom&holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/,,sincetheeccentricityofjupiter(~)ismuchsmallerthanthatofmercury(~),
intheintegrationoftheouterfiveplanets(f±),
weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)'smethodis15,
theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).
althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-
accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod().thespecialstartupprocedure,warmstart,
relativenumericalerrorofthetotalangularmomentumδa/a0andthetotalenergyδe/e0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,
notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-ε
sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,,-termintegrationswithsometestintegrations,,(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasinthen?‘pseudo-true’,wecomparethetestintegrationwiththemainintegration,n?×105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshita&nakai(1996)wherethedifferenceisestimatedas~60°.
3numericalresults–
inthissectionwebrieflyreviewthelong--termstabilityinallofournumericalintegrations:
first,webrieflylookatthegeneralcharacterofthelong--,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,(b)and(d).
verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±-(a)theinitialpartofn+1(t=×109yr).(b)thefinalpartofn+1(t=××109yr).(c)theinitialpartofn?1(t=0to?×109yr).(d)thefinalpartofn?1(t=?×109to?×109yr).ineachpanel,×(takenfromde245).
本章未完,点击下一页继续阅读。